AP CALCULUS AB	Homework 4.2a	Name:
Dr. Paul L. Bailey	Tuesday, December 17, 2019	

Write your homework *neatly*, in pencil, on blank white $8\frac{1}{2} \times 11$ printer paper. Always write the problem, or at least enough of it so that your work is readable. When appropriate, write in sentences.

The Mean Value Theorem is stated below.

Theorem 1. (Rolle's Theorem)

Let f be continuous on a closed interval [a,b] and differentiable on (a,b). Suppose that f(a) = f(b) = 0. Then there exists $c \in (a,b)$ such that f'(c) = 0.

Theorem 2. (Mean Value Theorem (MVT))

Let f be continuous on a closed interval [a, b] and differentiable on (a, b). Then there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Problem 1 (Thomas §4.2 # 4). Let $f(x) = \sqrt{x-1}$. Let a = 1 and b = 3. Find $c \in [a, b]$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Problem 2 (Thomas $\S4.2 \# 5 - 8$). Which functions satisfy the Mean Value Theorem on the indicated interval, and which do not? Justify you answer.

(a) f(x) = x^{2/3} on [-1,8]
(b) f(x) = x^{4/5} on [0,1]
(c) f(x) = √x(1-x) on [0,1]

(d)
$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{for } x \in [-\pi, 0) \\ 0 & \text{for } x = 0 \end{cases}$$

Problem 3 (Thomas $\S4.2 \# 10$). Let

$$f(x) = \begin{cases} 3 & \text{for } x = 0\\ -x^2 + 3x + a & \text{for } x \in (0, 1)\\ mx + b & \text{for } x \in [1, 2] \end{cases}$$

For what values of a, m, and b does f satisfy the hypothesis of the Mean Value Theorem on the interval [0, 2]?

Problem 4 (Thomas $\S4.2 \# 15$). Show that the function

$$f(x) = x^4 + 3x + 1$$

has exactly one zero on [-2, -1].

Problem 5 (Thomas $\S4.2 \# 19$). Show that the function

$$r(\theta) = \theta + \sin^2(\theta/3) - 8$$

has exactly one zero on \mathbb{R} .

Problem 6. Find all real zeros of the following polynomials.

- (a) $f(x) = x^3 + 3x^2 4x 12$ (Factor by Grouping)
- **(b)** $g(x) = x^4 2x^2 15$ (Factor by Substitution $u = x^2$)

Problem 7. Find all real zeros of the following polynomials.

- (a) $p(x) = x^3 4x^2 11x + 30$ (Integer Zeros Theorem)
- (b) $q(x) = 3x^3 + 11x^2 19x + 5$ (Rational Zeros Theorem)

Problem 8 (Thomas $\S3.6 \# 46$). Consider the equation

$$(x^2 + y^2)^2 = (x - y)^2.$$

Problem 9 (Thomas §3.8 # 27). A particle moves along the parabola $y = x^2$ in the first quadrant in such a way that its *x*-coordinate (measured in meters) increases at a steady 10 m/sec. How fast is the angle of inclination θ of the line joining the particle to the origin changing when x = 3 m?

Problem 10 (Thomas $\S4.1 \#4$). Let

$$f(x) = \frac{x+1}{x^2 + 2x + 2}.$$

Find all local extreme values of the function f, and where they occur.